UConn Office of Environmental Policy

Promoting sustainability at UConn


2 Comments

LEED: Minimizing UConn’s Environmental Footprint

by OEP intern Emily McInerney

leedsilverOn March 25, 2008 President Hogan signed the American College and University Presidents Climate Commitment (ACUPCC). This pledge led way for UConn’s Climate Action Plan: a comprehensive outline that strategizes and maps out sustainability initiatives to help UConn reach its goal of carbon neutrality by 2050. Carbon neutrality is defined as proportional amounts of carbon released and carbon sequestered. This can be achieved through carbon offsets such as our Co-gen facility or something as simple as planting a tree. Realistically, however, carbon neutrality does not mean a zero carbon footprint. For UConn, the aim is to have the 2050 carbon emissions 86% below our 2007 levels. One of the very first initiatives implemented at UConn to lower GHG emissions was the adoption of our own Campus Sustainable Design Guidelines. These guidelines apply to both the construction of new buildings as well as the renovation of preexisting buildings.

The Sustainable Design and Construction Policy requires a LEED (Leadership in Energy and Environmental Design) silver certification as a minimum performance standard for all projects that exceed $5 million. The U.S. Green Building Council developed LEED to act as an international green building certification system. LEED buildings offer savings in water and energy, reduce GHG emissions, improve air quality to promote health safety for occupants, and lower operating costs.

Oak Hall

Oak Hall

Most recently, the construction of two new buildings at UConn, Laurel and Oak Hall, have been completed that fulfill the LEED silver requirement. Oak Hall is set next to Homer Babbidge Library at the site of the former Co-op. Laurel is located where the Pharmacy building was originally constructed. These locations prevented the clearing of forests, wetlands, and other natural environments. There are several sustainable features that are important to note. From the outside, porous pavement reduces storm water runoff and flooding by providing storage and infiltration during storm events and a bio retention basin reduces harmful storm water runoff by collecting and holding storm water. The area is lined with native vegetation that provides habitat and food for local species. To reduce transportation CO2 emissions, biking is encouraged. There are 132 bicycle rack spaces available to facilitate bike transit.

Moving inside the building, the focus is on increased energy and water savings. The bathroom offers dual flush toilets and electric hand dryers to reduce paper waste. The combination of all water efficient features is anticipated to reduce water usage by 48%. The high performance windows both increase natural lighting which reduces energy costs and provide insulation through window glazing which reduce heating and cooling needs. Laurel is expected to have 16% energy savings and Oak is estimated to have 18% energy savings.

Visually speaking, LEED buildings are most notable for the recycled content and renewable materials that comprise their exterior paneling and interior walls and floors. Oak Hall uses bamboo for wall panels, recycled copper for the exterior siding and regional bricks. The bamboo is more sustainable than wood because it only take 3-5 years to harvest, the copper is made up of 80-95% recycled content, and the bricks are produced within 500 miles of campus. Approximately 75% of construction waste was diverted from landfills and reused or recycled.

Beyond sustainability, LEED buildings also have health benefits. Indoor environmental quality is improved through green cleaning products that are biodegradable, have low toxicity and low volatile organic compound content (VOC), and have reduced packaging. All plywood is formaldehyde-free and adhesives, sealants and paint have low or no VOC. Both Oak and Laurel are definite eye catchers. These buildings are not only environmentally friendly and cost effective but also aesthetically pleasing.  It is something to appreciate that sustainability can be characterized as modern and hip. For those interested in seeing how these LEED buildings affect UConn’s GHG emissions, the Office of Environmental Policy is planning to upload energy and water saving dashboards online.

Here are some examples of the sustainability features in Oak and Laurel Halls:


2 Comments

Retro-commissioning at UConn

by Alexander Samalot, OEP Intern

The variable frequency drive

UConn is currently undergoing a significant conservation and construction effort that many students may not know about. Currently buildings are becoming drastically more efficient through adjustments in the way energy is handled. I recently sat in on Sebesta’s (an engineering and design service company hired by the school) meeting. They were explaining to the UConn Utility services the changes that have been made across campus followed by a tour of the newest completed building, the Agricultural Biotechnology Laboratory.

What Sebesta has done is a process called retro-commissioning. It involves specifying building occupancy schedules, allowing for certain utilities to be turned down or off when not needed. Previously buildings would run the CO2 and heating/cooling ventilation based on the hours that the building had expected use. This wastes a tremendous amount of energy for unused space. Even small changes in the run time and rate of heaters and chillers and ventilation can have exponential savings.

The pumps controlled by the variable frequency drive

Most of the explanation regarded the changes in the newest retro commissioned building, the agriculture biotech facility. Due to these changes there is supposed to be an annual savings of $112,000. The large number of laboratories in the building needs a significant amount of ventilation for the potentially dangerous chemicals. The laboratory I toured was a Biosafety level two (out of four). It is not a life threatening area; biosafety level two simply means certain biological agents may be used in the lab, which demonstrates the need for lab ventilation.

There are three places which were specifically retro-fitted; one is the lab itself, the fume hood and the biosafety cabinet.  There are new controls using top of the line technology such as infrared and camera controlled zone pressure sensors. This is a very technical way of describing a box which detects if someone is sitting in front of the hood, which automatically turns off the ventilation when not in use. Also there are new valves called VAV’s which open and close using a mechanical arm when not in use and operate at a highly reduced flow. The building itself offers Variable Frequency Drives which are newer computers controlling water and air pump motors that move all of the warm and cool air and water throughout the building. These controllers drastically decrease the energy costs of the building causing very large savings and reduced energy use.

The Retro commissioning project is a great example of how new technology can be successfully implemented to have a large effect on campus. The existing buildings have had their existing infrastructure optimized resulting in notable reductions in energy use and savings for the school. With the construction of so many new buildings on campus focused on sustainability , it’s important to remember that there are buildings on campus that are over sixty years old that have significant room for improvement.


1 Comment

UConn’s Greenhouse Gas Inventory: Taking Stock of our Climate Progress and My Last Two Years

In my two years as a Sustainability Intern with the Office of Environmental Policy, I have been placed in a very interesting role. I have compiled the three greenhouse gas emission inventories for the Storrs campus from 2009 up though last year, 2011. This task has proven to be something I can look back on and be proud of and something that I think the University can also look back on and be proud of.

History and Purpose

The greenhouse gas inventory documents all the sources of emissions from the University that contribute to global warming, such as carbon dioxide, methane, nitrous oxide, and many others. The University has voluntarily tracking this information to some degree since 2003 although thorough inventories did not begin until 2007.

In 2008, then President Michael Hogan made the University a signatory of the American College and University Presidents’ Climate Commitment (PCC) at the request of large student support. The PCC is a pledge by institutions of higher education to reach a goal of climate neutrality by the year 2050. Signatories must have submitted an outline of how they would reduce their emissions to the 2050 target in a document known as a Climate Action Plan in order to become a part of the PCC. Additionally, participating institutions must provide annual greenhouse gas inventories and biannual progress updates.

Making Progress

In general our largest source of emissions each year has been from on campus stationary sources such as the cogeneration plant (which supplies most of the Storrs campus with electricity and steam), boilers (to produce additional steam for heating), chillers (which produce chilled water for cooling buildings), and generators (for emergency power). In fact, going back to 2001, this source of emissions has never accounted for less than 75% of the total campus emissions.

Pie graph of UConn's 2010 Greenhouse Gas Emissions by Percentage

In 2010, 77% of emissions come from either fuel burnt at the cogeneration plant or from stationary sources like generators and chillers.

This indicates that decreasing the demand for electricty, steam, and chilled water on campus is worthwhile strategy for reducing the amount of emissions generated each year.

The University of Connecticut has gone to great lengths to make its buildings significantly more energy efficient over the last few years. Some of the energy-saving initiatives have included replacement of lighting fixtures and bulbs, the annual EcoMadness energy conservation competition, and the sustainable design and construction guidelines.

Dot-plot with a moving average showing the amount of energy emissions per student for the years 2001 through 2010.

The line shows a three year moving average. Emissions are measured in metric tons of carbon dioxide equivalent. For reference, the average passenger car produces 5 MT eCO2 per year.

The above graph shows that over time UConn has been able to produce less greenhouse gas emissions on a per student basis over the years. This is especially amazing considering that the student population at UConn has grown by nearly 40% over that time and campus building space has grown by just over 30%. One key to this success has included the construction of the cogeneration system in the central utility plant, which provides UConn with electricity and steam in a more efficient manner than the grid can. Another has been the University’s policy requiring major construction and renovation projects since 2008 to meet a minimum LEED Silver rating, such as the Burton-Schenkman football training complex.

The University also has small emission contributions from other categories like transportation, fertilizer application, and refrigerants (which are actually incredibly potent greenhouse gases). Some of the emissions are offset by the UConn forest and its new composting operation.

A dot-plot showing the emissions from 2007 through 2010.

A line has been fitted over the past four years' data to approximate the trend in how UConn's emissions have been going.

Form 2007 to 2010, the overall emissions dropped by about 6,000 MT eCO2 per year, which is the equivalent of taking about 120 passenger cars off the road each of those years. This is a 3% annual decline.

This is a promising trend considering the fact that the number of full-time students increased 6% over those three years, part-time students by 10%, and summer students by 68%. Although there was a significant drop in building space from 2007 to 2008, building space increased from 2008 to 2010 increased by 3.5%.

Summing It All Up

Working on the greenhouse gas inventory has been immensely rewarding. I personally worked on the greenhouse gas inventories as far back as 2008 and I was the primary intern who worked on the 2009-2011 inventories. Not only am I proud to see my work produce these useful metrics for evaluating our steps towards sustainability, but I am also proud to have been a part of something that connects so much of the University together.

For each inventory I had to contact tens of people for information on a huge variety of sources. I received data from sources involved in generating power on campus as well as sources involved in generating compost (which now includes the agricultural compost facility, the floriculture program, many of the campus dining halls, the Spring Valley Farm living and learning community, and the EcoGarden student group). There is just something incredibly exciting to take bits and pieces from so many staff and faculty members and then have the opportunity to show them how their contribution to campus sustainability fits in at our annual spring Environmental Policy Advisory Council (EPAC) meeting.

I am excited that in less than one month I can honestly tell them that our University has reduced its emissions by 9% in three years, even as campus and the student body grew. And most exciting is that the 2011 inventory is nearing completion and it is so far promising our largest reduction to date.

Even when I felt things were not working in favor of sustainability on campus, I could still look at the inventory and know that the University has made and is still making a great and concerted effort to reducing our environmental footprint — and I would hope everyone can see this as well. (We did after all finish 16th in the Sierra Club Cool Schools survey last year, in part thanks to our third best overall score of 9.5/10 in energy efficiency — so even if we accidentally leave a few lights on, rest assured that we’ve done our best to make them “waste” as little energy as possible.)

So ultimately I would remind everyone, as an outgoing intern and as a graduating senior, that you must not let good be the enemy of perfection; take time to appreciate your progress every so often. But likewise, do not rest on your laurels, especially when you have shown in the past just how much you can accomplish.

Written by…

Chris Berthiaume is a senior in Environmental Engineering and a second year intern with the OEP. His major projects have included the greenhouse gas inventory, updating the website, social media engagement, and the assisting with the 2012 EocHusky 5k.